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SHOCK-FREE BREAKUP OF DROPLETS. TEMPORAL CHARACTERISTICS
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In the present paper, we consider the shock-free breakup of droplets in their encounter with a
layer (sheet) of a moving gas in the absence of pressure perturbations when the droplets are
affected by a short U-shaped pulse of aerodynamic forces. Under a high pressure of the ambient
gas medium p0 = 20–80 bar, the droplets (ethanol or liquid oxygen) have a chance to break up
after stay in a thing (2–5 mm thick) gas layer (jet) moving with a velocity of 1–10 m/sec. A
distinctive feature of the process is that the characteristic time of droplet deformation and the
period of natural oscillations coincide with the residence time for the droplets in the region of
their interaction with the gas stream. Empirical formulas are proposed for determination of the
total breakup time and the duration of the droplet disintegration stage in shock-free breakup.

Usually, droplet breakup in gas flows is associated with the appearance of pressure perturbations
(pressure or depression waves or shock or explosive waves) in the gas near droplets, which cause relative
motion of the droplets and the gas. A description of the principal modes of droplet breakup due to passage
of pressure waves in a two-phase system “gas–droplets” is given in [1].

It is known that droplet breakup can occur in a continuous medium that is not disturbed by pressure
waves. Droplet breakup in an isobaric medium will be called shock-free breakup. Shock-free droplet breakup
(SFDB) occurs, in particular, in the following cases:

1) breakup of free-falling droplets;
2) injection of liquid droplets (jets) across a gas flow that has the form of a rectangular sheet of finite

width or a cylindrical jet of finite diameter;
3) breakup of droplets of a heavy liquid with density ρf distributed in a flow of a lighter incompressible

liquid.
Some of the above-enumerated cases of SFDB are of practical importance. For example, the second

case is significant for the preparation of fuel mixtures in the combustion chambers of liquid-propellant rocket
engines or Diesel engines. This case of SFDB, in particular its temporal characteristics, has been studied
insufficiently, especially for high initial gas pressure p0 > 10 bar. Some experimental data are contradictory
because the gas parameters under a smooth increase of aerodynamic forces were not fixed. For example, many
results of [2, 3] were obtained within the errors reported in those papers and are of little use for quantitative
estimates.

For a reliable description of the SFDB process and determination of the parameters, it is necessary
to synchronize the observed behavior of particles with the initial and current conditions of relative motion
of the gas and the droplets. Only a special procedure for measuring the gas flow parameters near droplets
of ethanol and liquid oxygen in an isobaric medium [4, 5] made it possible to obtain reliable data on the
conditions of implementation and temporal characteristics of SFDB when droplets encounter a moving thin
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Fig. 1. Qualitative time dependence of the Weber number in the SFDB process for θ ≈ δt (a) and
θ > δt (b): solid and dashed curves refer to We⊥ and Wem, respectively.

layer of gas. The experimental data of [4–6] supplement the results of observations reported in [7–9]. It
follows from these data that the SFDB process depends on the residence time for the droplets inside the gas
sheet (jet): δt = ∆/w⊥. Here ∆ is the width (diameter) of the moving gas sheet, and w⊥ is the velocity of
motion of the droplets across the gas layer.

For a better understanding of the process considered better, it is reasonable to determine the time
variation of the aerodynamic forces acting on a droplet. We characterize the magnitude of these forces by the
Weber number We = ρgu

2
rd/σ. Here ρg is the gas density in the sheet (air or helium [4, 5]); ur = (w2

⊥+v2)0.5,
v is the velocity of the gas, and σ is the surface tension of the liquid. An analysis of experiments similar
to the experiments of [4–6] shows that the liquid droplets are subjected to the action of an U-shaped jump
of aerodynamic forces, whose main forms can be described by the Weber number as a function of time t
(Fig. 1). In the experiments of [6–10], at the time when the droplets approached the moving gas jet, the
Weber number was equal to We⊥ = ρgw2

⊥d/σ � Wem = ρgv2d/σ. However, in real engine operation and
in experiments with liquid oxygen under high pressure [4, 5], We⊥ ≈Wem. When We⊥ �Wem (Fig. 1a), a
droplet is exposed to an U-shaped action of aerodynamic forces with amplitude Wemax and duration θ ≈ δt.
When We⊥ ≈ Wem (Fig. 1b), the simple U-shaped form of the jump of aerodynamic forces is distorted
because the Weber number increases during motion of the droplets in the motionless gas before encounter
with the jet, and in this case, θ > δt.

Thus, besides the magnitude of aerodynamic forces (determined by the Weber number), an analysis of
the SFDB process must take into account the ratio of the time during which they act θ to the time scales of
the droplet breakup process. According to [1], these time scales are given by the time of particle deformation
τ1 = du−1

r (ρfρg−1)0.5 and the period of natural oscillations τ2 = 0.785ρfd3σ−1 ≈ 0.785τ1 We0.5.
The time of onset of intense droplet breakup τi and the duration of the disintegration process τb for

SFDB were determined in [4, 5]. The total breakup time is τΣ = τi + τb. None of the above-mentioned
experimental values was compared with τ1 and τ2 and with the residence time of the droplets in the field of
aerodynamic forces θ. Figure 2 shows the function τi(We) for various values of the initial gas pressure p0.
The experimental data were obtained for liquid oxygen droplets with a size of d = 0.7–1.4 mm.

As shown in Fig. 2, τi > θ for We 6 20–30 and τi 6 θ for We > 30. There are similar relations between
the period of oscillations τ2 and the time θ: τ2 > θ for We 6 15 and τ2 6 θ for We > 30. For We ≈ 15–30,
it was found that τ2 ≈ τi. In most experiments (see [4, 5]), τΣ > θ. The experimentally revealed complex
interaction between the processes characterized by the times τ1, τ2, and τΣ and the time of action of breaking
loads complicates the analysis of experimental data and determines the peculiar features of the phenomena
observed.

Usually, one distinguish three types of disintegration of a target (droplet) under the action of a load
(aerodynamic force) [11].
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Fig. 2. Time of onset of droplet breakup versus Weber number (the shaded area represents the residence time
for the droplets in the region of action of supercritical aerodynamic forces We1 > 10) for p0 = 2 (1), 5 (2), 10
(3), 20 (4), 30 (5), 40 (6), 50 (7), 60 (8), and 70 bars (9); the solid curve refers to calculation and points refer
to experiment.

1. For θ � τ2, a quasistatic breakup of droplets occurs, which depends on the magnitude of the applied
load (Weber number) [6, 10].

2. For θ < τ2 (see [7–9]), a pulsed breakup of droplets occurs. In this case, not only the magnitude of
the load but also the duration of its action are important.

3. For θ ≈ τ2, a quasistatic-pulsed droplet breakup occurs. In this case, the breakup process depends
on the dynamic characteristics of the load: We = We(t/θ) (see [2–5]). Resonance phenomena due to the
equality of the residence time of the droplets and the period of natural oscillations were observed [2, 3].
From this and the experiments of [4, 5], one can determine the dimensionless time of onset of intense droplet
breakup τ∗i = τi/τ1 and the breakup duration τ∗b = τb/τ1 as functions of the Weber number. Accordingly,
τ∗Σ = τΣ/τ1 = τ∗i + τ∗b .

Figure 3a and b shows the total breakup time τ∗Σ and the duration of the breakup stage τ∗b versus
the Weber number. For the case of shock-induced breakup of droplets by short-time pressure perturbations,
Gel’fand et al. [12] proposed the empirical relation τΣ ≈ τ1 + τ2 = τ1(1 + 0.785χWe0.5), i.e., τ∗Σ ≈ 1 +
0.785χWe0.5 (χ 6 1 and τ∗i = τi/τ1 ≈ 1). The solid curve in Fig. 3a corresponds to this relation with χ1 = 0.9
and is in satisfactory agreement with the experimental data of [4, 5]. Thus, the total droplet breakup time is
the sum of the time of particle deformation to the critical stage and the period of natural oscillations of the
particles. For We < 100, the duration of the particle breakup itself is close to τ∗b ≈ τ∗Σ − 1 = 0.785χ2 We0.5,
where χ2 = 0.8± 0.2.

Figure 3b shows the calculated dependence τ∗b = 0.785χ2 We0.5 (solid curve) and the experimental data
of [4, 5]. The satisfactory agreement between the calculated and experimental data implies that the breakup
time and the period of natural oscillations of droplets have close values. Pilch and Erdman [13] also observed
a paradoxical behavior of the function τ∗Σ = τ∗Σ(We) in the range of Weber numbers 18 < We < 45, where the
dimensionless time of droplet breakup past shock waves grows with increase in Weber number. This behavior
of droplets is typical of situations where the forced oscillations of the particles still contribute to the breakup
process. For We > 100, the period of droplet oscillations τ2 � τ1. In this case, the breakup process is related
to oscillations of the droplet shape to a lesser extent and, therefore, τ∗Σ 6= τ∗Σ(We) and the value of τ∗Σ tends
to a constant, approximately equal to 5± 1.

Thus, the main distinctive feature of the SFDB process in the case of droplet motion through a sheet
(jet) of a moving gas in an isobaric medium is pulsed or quasistatic-pulsed breakup of the particles under the
action of aerodynamic forces. This is due to the equality of the duration of the load θ and the characteristic
times of droplet deformation τ1 and natural oscillations τ2. As a result, the total droplet breakup time is
close to the sum of the deformation time and the period of natural oscillations. After attainment of the
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Fig. 3. Dimensionless total breakup time (a) and dimensionless duration of the droplet disintegration
stage (b) versus Weber number (the notation is the same as in Fig. 2).

critical deformation stage, the duration of the droplet breakup process is comparable to the period of natural
oscillations of the droplets. For θ � τ1 and, hence, for θ � τ2, the temporal characteristics for the SFDB
process and for the droplet breakup process in the presence of pressure waves coincide.
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